


Hydrogen Activation by complex aluminates

Holger Elsen, Christian Färber, Christian Fischer, Sjoerd Harder*

Chair of Inorganic and Organometallic Chemistry

Traditionally lithium aluminum hydride (LiAlH_4) is used as a stoichiometric reducing agent for among other organic multiple bonds followed by aqueous work up. This process leads to a considerable amount of waste, since LiAlH_4 is employed in an excess. Early main group metal complexes are known to react catalytically with C-C multiple bonds and imines in the presence of molecular hydrogen to yield the reduced substrate. [1,2] Presently we were able to observe that aluminate complexes were able to cleave hydrogen heterolytically, resulting in the formation of an aluminum hydride.

This work focuses on the reaction of LiAlH_4 with imines leading to the formation of an aluminum amide complex and its subsequent reaction with molecular hydrogen. Various model systems were modeled by DFT methods (B3PW91/6-311++G**) to gain an insight into the molecular processes. Understanding the reaction steps might lead to the development of a highly atom economic catalytic process.

Calculated transition state of the hydrogen cleavage

[1] J. Spielmann, F. Buch, S. Harder, *Angew. Chem. Int. Ed.* **2008**, 47, 9434-9438

[2] H. Bauer, M. Alonso, C. Färber, H. Elsen, J. Pahl, A. Causero, G. Ballmann, F. De Proft, S. Harder, *Nature Catalysis*, **2018**, 1, 40-47